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We study characteristics of superpositions and entanglement of thermal states at high temperatures and
discuss their applications to quantum-information processing. We introduce thermal-state qubits and thermal-
Bell states, which are a generalization of pure-state qubits and Bell states to thermal mixtures. A scheme is then
presented to discriminate between the four thermal-Bell states without photon number resolving detection but
with Kerr nonlinear interactions and two single-photon detectors. This enables one to perform quantum tele-
portation and gate operations for quantum computation with thermal-state qubits.
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I. INTRODUCTION

In many problems considered within the framework of
quantum physics, physical systems are treated as pure states
that can be represented by state vectors, or equivalently, by
wave functions. Even though such an approach is simple and
useful to address certain problems, it could often be quite
different from real conditions of physical systems. This may
be particularly true when one deals with macroscopic physi-
cal systems in terms of quantum physics. A macroscopic ob-
ject is a complex open system, which cannot avoid continu-
ous interactions with the environment. Such a physical
system is generally in a significantly mixed state and cannot
be represented by a state vector. In general, mixed states are
subtle objects whose properties are significantly more diffi-
cult to characterize than pure states.

Schrödinger’s famous cat paradox �1� is a typical example
where a massive classical object was assumed to be a pure
state. It describes a counterintuitive feature of quantum phys-
ics, which dramatically appears when the principle of quan-
tum superposition is applied to macroscopic objects. In the
original paradox and its various explanations, the initial cat
isolated in the steel chamber is considered a pure state that
can be represented by a state vector such as �alive� �or a
wave function such as �alive�. The cat isolated from the en-
vironment is then assumed to interact with a microscopic
superposition state ��g�+ �e�� /�2, where �g� and �e� are the
ground and excited states of a two-level atom. The cat will
be dead if the atom is found in the excited state �e�, while it
will remain alive if otherwise. Thus in Schrödinger’s gedan-
ken experiment the cat is entangled with the atom as
��g� �alive�+ �e� �dead���2, where the alive and dead statuses
of the cat are described by the state vectors �alive� and
�dead�. If one measures out the atomic system on the super-
posed basis ��g�± �e�� /�2, the cat will be in a superposition of
alive and dead states such as ��alive�± �dead�� /�2. It is often
argued that such superposed states and entangled states can
theoretically exist but are virtually impossible to observe be-
cause one cannot perfectly isolate a macroscopic object such
as the cat from its environment �2�.

However, this explanation is not fully satisfactory because
the cat, a macroscopic object, is a complex open system,
which cannot be represented by a state vector. One may ar-

gue that the cat could be assumed to be in an unknown pure
state such that the cat was certainly alive but the exact state
of the cat was unknown. However, the interactions between
the cat and its environment can cause the cat to become
entangled with the environment �3�. In such a case, even
though one can perfectly isolate the cat in the steel chamber
from the environment, the cat will remain entangled with the
environment due to its preinteractions with the environment.
Therefore, strictly speaking, even to assume a cat as an un-
known pure state in the steel chamber is not legitimate. Thus
a key point here is that it is unsatisfactory to describe the cat
by a pure state such as �alive� and �dead�. We may need a
more realistic assumption that the “cat” in Schrödinger’s
paradox was in a significantly mixed classical state. An in-
triguing question is then whether the quantum properties of
the resulting state would still remain or diminish under such
an assumption.

Recently, such an analogy of Schrödinger’s cat paradox,
where the state corresponding to the virtual cat is a signifi-
cantly mixed thermal state, was investigated �4�. A thermal
state with a high temperature is considered a classical state in
quantum optics. As the temperature of the thermal state in-
creases, the degree of mixedness, which can be quantified by
linear entropy, rapidly approaches the maximum value.
When the temperature approaches infinity, the thermal state
does not show any quantum properties. As a comparison,
coherent states with large amplitudes are known as the most
classical pure states �5�, and their superposition is often re-
garded as a superposition of classical states �6�. However,
coherent states are still pure states, which may not well rep-
resent truly classical systems, and they display some non-
classical features �7�. In Ref. �4�, it was shown that promi-
nent quantum properties can actually be transferred from a
microscopic superposition to a significantly mixed thermal
state �i.e., a thermal state of which the degree of mixedness is
close to the maximum value� at a high temperature through
an experimentally feasible process. This result clarifies that
unavoidable initial mixedness of the cat does not preclude
strong quantum phenomena.

One of the results in Ref. �4� is that quantum entangle-
ment can be produced between thermal states with nearly the
maximum Bell-inequality violation when the temperatures of
both modes goes to infinity. In previous related results, Bose
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et al. showed that entanglement can arise when two systems
interact if one of the systems is pure even when the other
system is extremely mixed �8�. There is an interesting previ-
ous example shown by Filip et al. for the maximum violation
of Bell’s inequality when one of the modes is an extremely
mixed thermal state �9�. Very recently, Ferreira
et al. showed that entanglement can be generated at any fi-
nite temperature between high-Q cavity mode field and a
movable mirror thermal state �10�. However, in these ex-
amples �8–10� only one of the modes is considered a large
thermal state �8–10� and entanglement vanishes in the infi-
nite temperature limit �8,10�, which is obviously in contrast
to the result presented in Ref. �4�. Entanglement for both of
the modes at the thermal limit of the infinitely high tempera-
ture has not been found before. Remarkably, the violation of
Bell’s inequality in our examples reaches up to Cirel’son’s
bound �11� even in this infinite-temperature limit for both
modes. As Vedral �12� and Ferreira et al. �10� pointed out it
is believed that high temperatures reduce entanglement and
all entanglement vanishes if the temperature is high enough,
which is obviously not the case in Ref. �4�.

The purpose of this paper is twofold. First, we review and
further investigate various properties of superpositions and
entanglement of thermal states at high temperatures �4�. In
particular, we investigate two classes of highly mixed sym-
metric states in the phase space. Both the classes of these
states do not show typical interference patterns in the phase
space while they manifest strong singular behaviors. Interest-
ingly, the first class of states has neither squeezing properties
nor negative values in their Wigner functions, however, they
are found to be highly nonclassical states. The second class
of states has the maximum negativity in the Wigner function.
Further, we discuss the possibility of quantum information
processing with thermal-state qubits. We introduce thermal-
state qubits and thermal-Bell states, which are a generaliza-
tion of pure Bell states. We show that four thermal-Bell
states can be well discriminated by nonlinear interactions
without photon number resolving measurements. Quantum
teleportation and gate operations for thermal-state qubits can
be realized using the Bell measurement scheme.

This paper is organized as follows. In Sec. II, we review
the generation process of superpositions of thermal states
and study their characteristics. In Sec. III, we study entangle-
ment of thermal states, i.e., Bell inequality violations. In Sec.
IV, we discuss the possibility of quantum-information pro-
cessing using thermal states. We first define the thermal-state
qubit and the Bell-basis states using thermal-state entangle-
ment. We then show that the four Bell states can be well
discriminated by homodyne detection and two Kerr nonlin-
earities. It follows that quantum teleportation and quantum
gate operations can be realized with thermal-state qubits. We
conclude with final remarks in Sec. V.

II. SUPERPOSITIONS OF THERMAL STATES

A. Generation of thermal-state superpositions

Let us first consider a two-mode harmonic oscillator
system. A displaced thermal state can be defined as

�th�V,d� =� d2�Pth�V,d����	�� , �1�

where ��� is a coherent state of amplitude � and

P�
th�V,d� =

2

��V − 1�
exp
−

2�� − d�2

V − 1
� , �2�

with variance V and displacement d in the phase space. The
thermal temperature � increases as V increases as e��/�

= �V+1� / �V−1�, where � is Planck’s constant and � is the
frequency �13�. Suppose that a microscopic superposition
state

���a =
1
�2

��0�a + �1�a� , �3�

where �0� and �1� are the ground and first excited states of the
harmonic oscillator, interacts with a thermal state �b

th�V ,d�
and the interaction Hamiltonian is

HK = 	â†âb̂†b̂ , �4�

which corresponds to the cross Kerr nonlinear interaction.
The resulting state is then

�ab
ent =

1

2
� d2�Pth�V,d���0�	0� � ���	�� + �1�	0� � ��ei
�	��

+ �0�	1� � ���	�ei
� + �1�	1� � ��ei
�	�ei
� , �5�

and 
 is determined by the strength of the nonlinearity 	 and
the interaction time. The Wigner representation of �ab

ent is

Wab
ent��,�� =

1

�
e−2���2�Wth��;d� + 2�Vc��;d� + 2��Vc��;d��*

+ �4���2 − 1�Wth��;dei
� , �6�

where � and � are complex numbers parametrizing the phase
spaces of the microscopic and macroscopic systems, respec-
tively, and

Wth��;d� =
2

�V
exp
−

2�� − d�2

V
� , �7�

Vc��;d� =
2

�JK
exp
−

2

K
�1 − ei
�d2

−
1

J
�� −

2ei
d

K
���* −

2d

K
�� , �8�

K=2+ �V−1��1−ei
�, J= �sin 
 /2+ iV cos 
 /2� / �2V sin 
 /2
+2i cos 
 /2�, and d has been assumed real without loss of
generality. If one traces �ab

ent over mode a, the remaining state
will be simply in a classical mixture of two thermal states
and its Wigner function will be positive everywhere. How-
ever, if one measures out the “microscopic part” on the su-
perposed basis, i.e., ��0�a± �1�a� /�2, the “macroscopic part”
for mode b may not lose its nonclassical characteristics. Such
a measurement on the superposed basis will reduce the re-
maining state to
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�sup�±� = Ns
±� d2�Pth�V,d�����	�� ± ��ei
�	�� ± ���	�ei
�

+ ��ei
�	�ei
� , �9�

where Ns
± are the normalization factors, and its Wigner func-

tion is

Wsup�±���� = Ns
±�Wth��;d� ± Vc��;d� ± �Vc��;d�*

+ Wth��;dei
� . �10�

The ± signs in Eqs. �8� and �9� correspond to the two pos-
sible results from the measurement of the microscopic sys-
tem. The state in Eq. �10� is a superposition of two thermal
states.

A feasible experimental setup to generate superpositions
of thermal states is atom-field interactions in cavities, where
a � /2 pulse can be used to prepare the atom in a superposed
state. This type of experiment has already been performed to
produce a superposition of coherent states �14�. In our cases,
simply thermal states can be used instead of coherent states.
Another possible setup is an all-optical scheme with free-
traveling fields and a cross-Kerr medium, where a standard
single-photon qubit could be used as the microscopic super-
position. Recently, there have been theoretical and experi-
mental efforts to produce and observe giant Kerr nonlineari-
ties using electromagnetically induced transparency �15�.
Furthermore, it was shown that a weak Kerr nonlinearity can
still be useful if an initially strong field is employed in this
type of experiment �16�. We shall further explain this with
examples in Sec. III.

B. Negativity of the Wigner function

The negativity of the Wigner function is known as an
indicator of nonclassicality of quantum states. In order to
observe negativity of the Wigner function in a real experi-
ment, its absolute minimum negativity should be large
enough. The minimum negativity of the Wigner function in
Eq. �6� for V=1 is −0.144 for d=0 and −0.246 for d→�.
Now suppose the initial state can be considered a classical
thermal state by letting V1. One might expect that the
negativity would be washed out as the initial state becomes
mixed, but this is not the case. The minimum negativity ac-
tually increases as V gets larger. If V→�, the minimum
negativity of the Wigner function �6� is −0.246 regardless of
d: no matter how mixed the initial thermal state was, the
minimum negativity of the Wigner function is found to be a
large value. The point in the phase space, which gives the
minimum negativity when V1 or d0, is �− 1

2 ,0� and has
negativity

Wneg � Wab
ent�−

1

2
,0� =

2�− 2 +
1

V
exp
−

2d2

V
��

�2�e
. �11�

It can be shown that Wneg approaches −4/ ��2�e��−0.246
when either d→� or V→�.

This effect is obviously due to the interaction between the
microscopic superposition and the macroscopic thermal

state. If the initial microscopic state is not superposed, e.g.,
���a= �1�a, the resulting state will be a simple direct product
��1�	1 � �a � �b

th�V ,−d�. While for V=1 this state will exhibit
negativity, this is washed out and tends to zero as V→�.
Needless to say, if it was �0�a instead of �1�a, the resulting
Wigner function will be a direct product of two Gaussian
states whose Wigner function can never be negative. The
superposition state �3� plays the crucial role in making the
minimum negativity of the resulting Wigner function always
saturate to a certain negative value no matter how mixed and
classical the initial state of the other mode becomes.

The Wigner functions of the single-mode states Wsup�±�

���� in Eq. �10� show large negative values. The minimum
negativity of the Wigner function Wsup�−���� is Wsup�−��0�
=2/� regardless of the values of V and d. On the other hand,
the minimum negativity of the Wigner function Wsup�+����
approaches 2/� for d→� and disappears when d=0.

C. Quantum interference in the phase space

When 
=�, the state �9� becomes

�± = N��th�V,d� ± ��V,d� ± ��V,− d� + �th�V,− d�� ,

�12�

where ��V ,d�=�d2�Pth�V ,d� �−��	�� and

N = 2�1 ±

exp
−
2d2

V
�

V2 � . �13�

If the initial state for mode b is a pure coherent state, i.e.,
V=1, the measurement on the superposed basis for mode a
will produce a superposition of two pure coherent states as

��̃±� =
1

�1 ± e−2���2
���� ± �− ��� , �14�

where �=d. The probability P± to obtain the state �± is ob-
tained as �17�

P± = 	�±�Trb��ab
ent���±� =

1

2
�1 ±

exp
−
2d2

V
�

V
� , �15�

where ��±�= ��0�± �1�� /�2. The probability approaches P±

=1/2 when either d or V becomes large.
As an analogy of Schrödinger’s cat paradox, the variance

V corresponds to the size of the initial “cat,” and the distance
d between the two thermal component states corresponds to
distinguishability between the “alive cat” and the “dead cat”.
Suppose that both V and d are very large for the initial ther-
mal state. The two thermal states �th�V , ±d� become macro-
scopically distinguishable when d�V, and our example
may become a more realistic analogy of the cat paradox in
this limit. Both the states �± in this case show probability
distributions with two Gaussian peaks and interference
fringes �4�. Figure 1 presents the probability distributions of
x ��Re���� and p ��Im���� for �− �a� when V=100 and d
=100 and �b� when V=1000 and d=300. The probability
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distribution of x �p� for �± can be obtained by integrating the
Wigner function of �± over p �x�. The two Gaussian peaks
along the x axis and interference fringes along the p axis
shown in Fig. 1 are a typical signature of a quantum super-
position between macroscopically distinguishable states. The
visibility v of the interference fringes is defined as �13�

v =
Imax − Imin

Imax + Imin
, �16�

where I=�dxWsup�−���� and the maximum should be taken
over p. It can be simply shown that the visibility v is always
1 regardless of the value of V. Note that d should increase
proportionally to �V to maintain the condition of classical
distinguishability between the two component thermal states
�th�V , ±d�. The interference fringes with high visibility are
incompatible with classical physics and evidence of quantum
coherence. The fringe spacing �the distance between the
fringes� does not depend on V but only on d, i.e., a pure
superposition of coherent states shows the same fringe spac-
ing for a given d. We emphasize that the states shown in Fig.
1 are “superpositions” of severely mixed thermal states.

An experimental realization of a nonlinear effect corre-
sponding to 
=� is very demanding particularly in the pres-
ence of decoherence. Here we point out that the method us-
ing a weak nonlinear effect �
��� combined with a strong
field �d1� �16� can be useful to generate a thermal-state
superposition with prominent interference patterns. In Fig. 2,
we have used experimentally accessible values V=5, d
=2000, and 
=� /1000, but the fringe visibility is still 1. In

this case, decoherence during the nonlinear interaction
would be significantly reduced because of the decrease of the
interaction time �16�. Note also that, if required, the state in
Fig. 2 can be moved to the center of the phase space, for
example, using a biased beam splitter �BS� and a strong co-
herent field �16�.

D. Symmetric macroscopic quantum states

Let us assume that d=0, i.e., the initial state is the thermal
state �th�V ,0� at the origin of the phase space. In this case,
the thermal-state superpositions �± are produced with prob-
abilities P±= �1/2��1± �1/V�, respectively. Figure 3 shows
the Wigner functions of �+ dependent on the interaction time
between the macroscopic thermal state and the microscopic
superposition in a cross-Kerr medium. The state is always
symmetric in the phase space regardless of the interaction
time as shown in Fig. 3. In this figure, the initial state is a
thermal state of V=100 �Fig. 3�a��. In a relatively short time
��=� /32 and �=� /16�, the state shows some interference
patterns. When �=�, the evolved state looks very localized
around the origin as shown in Fig. 3. The generated state at
�=� does not show negativity of the Wigner function nor
squeezing properties. On the other hand, a well defined P
function does not exist for this state.

In the case of �−, with the same assumption d=0, the
Wigner function at 
=� has the minimum negativity
�−2/�� at the origin regardless of V. As a result of the inter-
action with the microscopic superposition, a deep hole to the
negative direction below zero has been formed around the
origin for �− as shown in Fig. 4.

III. ENTANGLEMENT BETWEEN THERMAL STATES

Entanglement between macroscopic objects and its Bell-
type inequality tests are an important issue. In this section,
we shall show that entanglement can be generated between
high-temperature thermal states even when the temperature
of each mode goes to infinity.

A. Entanglement using two initial thermal states

If the microscopic superposition interacts with two ther-
mal states �b

th�V ,d� and �c
th�V ,d�, and the microscopic par-

ticle is measured out on the superposed basis, the resulting
state will be
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FIG. 1. The probability distributions of x �left� and p �right� for
a “superposition” of two distant thermal states. A thermal state with
a large mixedness is converted to such a “thermal-state superposi-
tion” by interacting with a microscopic superposition �see text�. The
variance V and displacement d for the thermal state are chosen as
�a� V=100 and d=100, and �b� V=1000 and d=300. The fringe
visibility is 1 regardless of V and the fringe spacing �the distance
between the fringes� does not depend on the variance �i.e., mixed-
ness� but only on the distance d between the two component ther-
mal states.
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FIG. 2. The probability distributions P for a “superposition” of
thermal states where V=5, d=2000, 
=� /1000. The x� �p�� axis in
this figure has been rotated by � /2000 from the x �p� axis for
clarity.
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�tm�±� = Nt��th�V,d� � �th�V,d� ± ��V,d� � ��V,d�

± ��V,− d� � ��V,− d� + �th�V,− d� � �th�V,− d� ,

�17�

where

Nt = 2�1 ±

exp
−
4d2

V
�

V2 � . �18�

Such two-mode thermal-state entanglement can be generated
using two cavities and an atomic state detector �18�. Extend-
ing the two cavities to N cavities, entanglement of N-mode
thermal states can also be generated. Such a state is an anal-
ogy of the N-mode pure GHZ state �19� but each mode is
extremely mixed. Here we shall consider the Bell-CHSH in-
equality �20,21� with photon number parity measurements
�18,22�. The parity measurements can be performed in a
high-Q cavity using a far-off-resonant interaction between a

two-level atom and the field �23�. The Bell-CHSH inequality
can be represented in terms of the Wigner function as �22�

�B�±�� =
�2

4
�Wtm�±���,�� + Wtm�±���,��� + Wtm�±����,��

− Wtm�±����,���� � 2, �19�

where Wtm�±��� ,�� is the Wigner function of �tm�±� in Eq.
�17�. As shown in Fig. 5, the Bell violation approaches the
maximum bound for a bipartite measurement 2�2 �11� when
d�V regardless of the level of the mixedness V, i.e., the
temperatures of the thermal states. Note that it is true for
both of �+ and �− even though only the case of �+ has been
plotted in Fig. 5�a�. This implies that entanglement of nearly
1 ebit has been produced between the two significantly
mixed thermal states for d�V, and such “thermal-state en-
tanglement” cannot be described by a local theory.
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FIG. 3. �Color online� The time dependent Wigner functions of the thermal state of V=100 at the origin �d=0� after an interaction with
a microscopic superposition and a conditional measurement. The measurement result on the microscopic part was supposed to be ��0�
+ �1�� /�2. The interaction times are �a� �=	t=0, �b� �=	t=� /32, �c� �=� /16, �d� ��3.102, �e� ��3.122, and �f� �=�.

QUANTUM SUPERPOSITIONS AND ENTANGLEMENT OF… PHYSICAL REVIEW A 76, 042103 �2007�

042103-5



B. Entanglement using a beam splitter

A different type of macroscopic entanglement can be gen-
erated by applying the beam splitter operation

exp��/2�ei�âs
†âd − e−i�âd

†âs�� , �20�

on the “thermal-state superpositions” in Eq. �9�. The state
after passing through a 50:50 beam splitter can be repre-
sented as

N� d2�P�
th�V,d��� �

�2
,−

�

�2
� ± �−

�

�2
,

�

�2
��

��� �

�2
,−

�

�2
� ± �−

�

�2
,

�

�2
�� , �21�

where N is defined in Eq. �13�. When d is large, this state
violates the Bell-CHSH inequality to the maximum bound
2�2 regardless of the level of mixedness V as shown in Fig.
5�b�. Again, it is true for both �+ and �− even though only the
case of �+ has been plotted in Fig. 5�b�. Furthermore, these
states severely violate Bell’s inequality even when d=0 as V
increases as shown in Fig. 6. We have found that the opti-
mized Bell violation of these states approaches 2.324 49 for
V→�. Interestingly, this value is exactly the same as the
optimized Bell-CHSH violation for a pure two-mode
squeezed state in the infinite squeezing limit �24�. Note that
multimode entangled states can be generated using multiple
beam splitters.

It should be noted that the Bell violations are more sensi-
tive to the interaction time when either V or d is larger.
Figure 7 clearly shows this tendency. Therefore, in order to
observe the Bell violations using the mixed state of V �and d�
large, the interaction time in the Kerr medium should be
more accurate.

IV. QUANTUM-INFORMATION PROCESSING WITH
THERMAL-STATE QUBITS

In this section, we discuss the possibility of quantum-
information processing with thermal-state qubits and
thermal-state entanglement.

A. Qubits and Bell-state measurements

We introduce a thermal-state qubit

�� = �a�2�th�V,d� ± ab*��V,d� ± a*b��V,− d� + �b�2�th�V,− d� ,

�22�

where a and b are arbitrary complex numbers. The basis
states �th�V ,d� and �th�V ,−d� can be well discriminated by a
homodyne measurement when d is larger than V. The
thermal-state qubit �22� can be rewritten as

−1
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W
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FIG. 4. �Color online� The Wigner function of the thermal state
of V=100 at the origin �d=0� after an interaction with a micro-
scopic superposition and a conditional measurement. The measure-
ment result on the microscopic part was supposed to be ��0�
− �1�� /�2 with the interaction time �=	t=�.
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FIG. 5. �a� The optimized violation B��B+�max of Bell-CHSH
inequality for the “thermal-state entanglement” �+ of V=1000 �solid
curve� and V=100 �dashed curve�. The Bell violation of a pure
entangled coherent state, i.e., V=1, has been plotted for comparison
�dotted curve�. The Bell-violation B approaches its maximum
bound 2�2, when d�V regardless of the level of the mixedness V.
�b� The optimized Bell-violation B against d for the different type
of thermal-state entanglement generated using a 50:50 beam splitter
from �+. V=1000 �solid curve�, V=100 �dashed curve�, and V=1
�dotted curve�.
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FIG. 6. The optimized Bell-violation B against V for the slightly
different type of thermal-state entanglement generated using a
50:50 beam splitter using �+ when d=0.
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�� =� d2�P�
th�V,d��a��� + b�− ����a*	�� + b*	− ��� ,

�23�

which can be understood as a generalization of the coherent-
state qubit a �d�+b �−d�, where �d� is a coherent state of am-
plitude d. The thermal-state qubit �23� becomes identical to
the coherent-state qubit when V=1.

We also define four thermal-Bell states as

���±� = Nt��th�V,d� � �th�V,d� ± ��V,d� � ��V,d� ± ��V,− d�

� ��V,− d� + �th�V,− d� � �th�V,− d� , �24�

���±� = Nt��th�V,d� � �th�V,− d� ± ��V,d� � ��V,− d�

± ��V,− d� � ��V,d� + �th�V,− d� � �th�V,d� ,

�25�

where Nt was defined in Eq. �18�. The thermal-Bell states can
be written as

���±� = Nt� d�2d�2P�
th�V,d�P�

th�V,d����,�� ± �− �,− ���

��	�,�� ± 	− �,− ��� , �26�

���±� = Nt� d�2d�2P�
th�V,d�P�

th�V,d����,− �� ± �− �,���

��	�,− �� ± 	− �,��� . �27�

For quantum-information processing applications, it is an
important task to discriminate between the four Bell states.
Here we discuss two possible ways to discriminate between
the thermal-Bell states �25�. We shall only briefly describe
the first scheme using photon number resolving measure-
ments and focus on the second scheme using nonlinear inter-
actions.

The first method is to simply use a 50-50 beam splitter
and two photon number resolving detectors as shown in Fig.
8�a�. This scheme is basically the same as the Bell-state mea-
surement scheme with pure entangled coherent states
�25,26�. Let us suppose that the amplitude d is large enough,
i.e., d�V. If the incident state was ���+� or ���−�, most of
the photons are detected on detector A in Fig. 8�a�. Mean-
while, most of the photons are detected on detector B when
the incident state was ���+� or ���−�. The average photon
numbers between the “many-photon case” and the “few-
photon case” are compared in Fig. 9. Furthermore, the states
���+� and ���+� contain only even numbers of photons while
���−� and ���−� contain only odd numbers of photons. There-
fore, all the four Bell states can be well discriminated by
analyzing numbers of photons detected at detectors A and B.
For example, if detector A detects many photons while de-
tector B detects few and the total photon number detected by
the two detectors are even, this means that state ���+� was
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FIG. 7. �a� The Bell-CHSH function B against � �=	t� for V
=1 �solid curve�, V=10 �dashed curve�, and V=20 �dotted curve�
for d=30. �b� The Bell-CHSH function for d=10 �solid curve�, d
=20 �dashed curve�, and d=30 �dotted curve� for V=10. The Bell
violations are more sensitive to the interaction time as either V or d
increases.
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measurements with cross-Kerr nonlinear interactions �NL� �see text
for details�.
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measured by the thermal-Bell measurement. The nonzero
failure probability can be made arbitrarily small by increas-
ing d.

However, the average photon numbers of the thermal-Bell
states are high when V1 and d1. In this case, it would be
unrealistic to use photon number resolving detectors. It
would be an interesting question whether these four thermal-
Bell states can be distinguished by classical measurements,
such as homodyne detection, instead of photon number re-
solving detection. Our alternative scheme employs cross-
Kerr nonlinearities and single-photon detectors as shown in
Fig. 8�b�. Let us first suppose that the input field was ���+�.
The incident two-mode state passes through a 50-50 beam
splitter BS1. The state after passing through the 50:50 beam
splitter BS1 is

�B = Nt� d2�d2�P�
th�V,d�P�

th�V,d����,− ��	�,− ��

+ ��,− ��	− �,�� + �− �,��	�,− �� + �− �,��	− �,�� ,

�28�

where �= ��+�� /�2 and �= ��−�� /�2. Two dual-rail
single-photon qubits ��+�ee� and ��+� f f�, where

��+� =
1
�2

��0��1� + �1��0�� , �29�

are prepared using two single photons and 50:50 beam split-
ters BS2 and BS3, as shown in Fig. 8�b�. Then, traveling
fields at modes c and d interact with those of modes e and f ,

respectively, in cross-Kerr nonlinear media. We suppose that
the interaction time is t=� /	, and the resulting state is then

�B� = UceUdf�cd
B �ee�

q
� f f�

q Uce
† Udf

† , �30�

where Uce=exp�i�Hce
K /	�� and �q= ��q�	�q�. An explicit

form of Eq. �30� can then be simply obtained using the iden-
tity

Uce���c�0�e = ���c�0�e,

Uce���c�1�e = �− ��c�1�e, �31�

where ��� is a coherent state. However, we omit such an
explicit expression in this paper for it is too lengthy.

After the nonlinear interactions, the qubit parts, modes e,
e�, f , and f�, should be measured with the measurement basis

�� + + �, � + − �, �− + �, �− − � , �32�

where �+ + �= ��+�ee� ��+� f f�, �+−�= ��+�ee� ��−� f f�, �−+ �
= ��−�ee� ��+� f f�, �−−�= ��−�ee� ��−� f f�, and ��−�= ��0� �1�
− �1� �0�� /�2. This measurement can be performed using two
50:50 beam splitters BS4 and BS5, and four detectors A1,
A2, B1, and B2, as shown in Fig. 8�b�. If detectors A1 and
B1 click, i.e., the measurement result is �+ + �, the resulting
state at modes c and d is

�++ =
Nt

4
� d2�d2�P�

th�V,d�P�
th�V,d������ + �− ���

��	�� + 	− ���c � ����� + �− ����	�� + 	− ���d.

�33�

Note that state �++ is not normalized, which implies that the
probability of obtaining the corresponding measurement re-
sult is not unity. The probability of obtaining this result is

P++ =
�V + 1��V + e−4d2/V�

2�V2 + e−4d2/V�
. �34�

When the result is either �+−� or �−+ �, the result is

	�2��B���2� = 	�3��B���3� = 0, �35�

which obviously means that the probability of obtaining this
result is zero. When the result is �−−�, i.e., detectors A2 and
B2 click,

�−− =
Nt

4
� d2�d2�P�

th�V,d�P�
th�V,d�

� ����� − �− ����	�� − 	− ���c

� ����� − �− ����	�� − 	− ���d, �36�

which is not normalized. The probability of obtaining this
result is

P−− =
�V − 1��V − e−4d2/V�

2�V2 + e−4d2/V�
, �37�

and it can be simply verified that P+++ P−−=1. Therefore,
only the measurement results �+ + � and �−−� can be obtained
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FIG. 9. The average photon number N for the “many-photon
case” �solid line� and the “few-photon case” �dashed line� for V
=10 against d �a� when the input state is either ���+� or ���+� and
�b� when the input state is either ���−� or ���−�.
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in the case of the input state ���+�. This is exactly the same
for the case of ���+�. In the same way, it can be shown that if
either the input state was ���−� or ���−�, only the measure-
ment results �+−� and �−+ � can be obtained. In other words,
the parity of the total incoming state is perfectly well dis-
criminated by the measurements on single-photon qubits.

Subsequently, a homodyne measurement is performed for
mode c by homodyne detector C as shown in Fig. 8�b�. We
assume that ideal homodyne measurements are performed,
i.e., when a homodyne measurement is performed the state is
projected onto eigenstate �x� of operator X with eigenvalue x,
where

X =
1
�2

�a + a†� . �38�

Let us first consider the case when the measurement result
for the single-photon qubits is �+ + �. In this case, the remain-
ing state is �++ in Eq. �33�. The probability distribution P

��+�
++

for the homodyne measurement at detector C is

P��+�
++ = 	x�Trd��++��x� =

V1/2�e−Vx2
+ e−x2/V�

�1/2�V + 1�
. �39�

Note that the superscript ++ denotes that the qubit measure-
ment result was �+ + �, and the subscript ��+� denotes that the
input state was ���+�

. These notations will be used also for
the other cases in this section. The same analysis can be
performed for the other possible measurement outcome
�−−� as follows:

P��+�
−− = 	x�Trd��−−��x� =

V1/2�e−Vx2
− e−x2/V�

�1/2�V − 1�
. �40�

In the same way, for another input state ���−� it is straight-
forward to show

P��−�
+− = P��+�

++ , P��−�
−+ = P��+�

−− , �41�

and P
��−�
++ = P

��−�
−− =0. On the other hand, if the input state was

���+�, the probability distributions P
��+�
++ and P

��+�
−− at detector

C are

P��+�
++ = 	x�Trc��++��x� =

V1/2e−�x�4d+�2+V2�x/V��e��1+V2�x2/V� + 2e�2x�2d+x�/V� + e�x�8d+x+V2x�/V�

2�1/2�e4d2/VV� + 1
, �42�

P��+�
−− = 	x�Trc��−−��x� =

V1/2e−�x�4d+�2+V2�x/V��e��1+V2�x2/V� − 2e�2x�2d+x�/V� + e�x�8d+x+V2x�/V�

2�1/2�e4d2/VV� − 1
. �43�

It is straightforward to show for the other input state ���−�,

P��−�
+− = P��+�

−− , P��−�
−+ = P��+�

++ . �44�

The probability distributions P
��±�
++ and P

��±�
++ are plotted in

Fig. 10. Figure 10 shows that when the input state was ���+�

or ���−�, the homodyne measurement outcome by detector C,
characterized by P

��+�
++ and P

��+�
−− , is located around the origin.

However, when the input state was ���+� or ���−�, the homo-
dyne measurement outcome by detector C, characterized by
P

��+�
++ and P

��+�
−− , is located far from the origin. Therefore, two

of the Bell states ���+�or ���−�, can be well distinguished
from the other two by the homodyne detector C for the case
of the measurement outcome �+ + �. Finally, by combining
the homodyne measurement result and the qubit measure-
ment result, all four Bell states can be effectively distin-
guished. For example, let us assume that the measurement
outcome of the single photon detectors was �+ + � and the
homodyne detection outcome was around the origin, i.e., x
�0. Then, one can say that state ���−� has been measured for
the result of the thermal-Bell measurement.

As implied in Fig. 10, the overlaps between the probabil-
ity distributions around the origin, P

��+�
++ and P

��+�
−− , and the

other distributions, P
��+�
++ and P

��+�
−− , are extremely small for a

sufficiently large d. In other words, the distinguishability by
the homodyne detection rapidly approaches 1 as d increases.
As an example, we can calculate the distinguishability be-
tween the states ���+� and ���+� by the homodyne measure-
ment by detector C. The distinguishability by homodyne de-
tection is

Ps =
1

2���x��d

dxPc
++�x� + �

�x��d

dxPd
++�x�� , �45�

which is plotted in Fig. 11. The distinguishability is Ps
�0.99 for d=5.5 �d=7.8� when V=10 �V=20�, and it be-
comes as high as Ps�0.999 99 for d=10 �d=15� when V
=10 �V=20�. If necessary, another homodyne measurement
can be performed for mode d to enhance distinguishability of
the Bell measurement. When the probability distribution at
detector C is around the origin that of detector D is far from
the origin and vice versa.

Note also that the second scheme using homodyne detec-
tion is robust to detection inefficiency compared with the
first scheme using photon number resolving measurements.
In the first scheme, even if a detector misses only one pho-
ton, it will result in a completely wrong measurement out-
come. In the second scheme, however, the measurement out-
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come will not be affected in that way. If a single-photon
detector misses a photon, it will be immediately recognized.
Such a case can simply be discarded so that it will only
degrade the success probability of the Bell measurement.
The homodyne detection inefficiency will not significantly
affect the result when the distributions around the origin and
the distributions far from the origin are well separated, i.e.,
when d�V, as shown in Fig. 10. On the other hand, loss in
the Kerr medium will have a detrimental affect.

B. Quantum teleportation and computation

Quantum teleportation of a thermal-state qubit can be per-
formed using one of the Bell states as the quantum channel.
Let us assume that Alice needs to teleport a thermal-state

qubit �� to Bob using a thermal-state entanglement ���−�

shared by the two parties. The total state can be represented
as

�1
�

� �23
��−� = Nt� d�2d�2d�2P�

th�V,d�P�
th�V,d�P�

th�V,d�

���a��� + b�− ���1���,− �� − �− �,���23��H.c.� .

�46�

Alice first needs to perform the thermal-Bell measurement
described in the previous subsection. To complete the tele-
portation process, Bob should perform an appropriate unitary
transformation on his part of the quantum channel according
to the measurement result sent from Alice via a classical
channel. It is straightforward to show that the required trans-
formations are exactly the same as those for the coherent-
state qubit �25�. When the measurement outcome is ���−�,
Bob obtains a perfect replica of the original unknown qubit
without any operation. When the measurement outcome is
���−�, Bob should perform ���↔ �−�� on his qubit in Eq.
�23�. Such a phase shift by � can be done using a phase
shifter whose action is described by P�
�=ei
a†a, where a
and a† are the annihilation and creation operators. When the
outcome is ���+�, the transformation should be performed as
���→ ��� and �−��→−�−��. It is known that the displace-
ment operator is a good approximation of this transformation
for d1 �27�. This transformation can also be achieved by
teleporting the state again locally and repeating until the re-
quired phase shift is obtained �28�. When the outcome is
���+�, �x and �z should be successively applied.

V. CONCLUSION

In this paper, we have studied the characteristics of super-
positions and the entanglement of thermal states at high tem-
peratures and discussed their applications to quantum-
information processing. The superpositions and
entanglement of thermal states show various nonclassical
properties such as interference patterns, negativity of the
Wigner functions, and violations of the Bell-CHSH inequal-
ity. The Bell violations are more sensitive to the interaction
time during the generation process when the thermal tem-
perature �i.e., mixedness� of the thermal-state entanglement
is larger. Therefore, in order to observe the Bell violations
using the mixed state at a high temperature, the interaction
time in the Kerr medium should be accurate. We have
pointed out that certain superpositions of high-temperature
thermal states, symmetric in the phase space, can also be
generated. Some of these states have neither squeezing prop-
erties nor negative values in their Wigner functions but they
are found to be highly nonclassical.

We have introduced the thermal-state qubit and thermal-
Bell states for applications to quantum-information process-
ing. We have presented two possible methods for the Bell-
state measurement. The Bell-state measurement enables one
to perform quantum teleportation and gate operations for
quantum computation with thermal-state qubits. The first
scheme uses two photon number resolving detectors and a
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FIG. 10. �a� The probability distributions P��+�
++ �solid curve� and

P��+�
++ �dashed curve� for homodyne measurements at detector C. �b�

The probability distributions P��−�
++ �solid curve� and P��−�

++ �dashed
curve� for homodyne measurements at detector C.

20 4 6 8 10 d

0.5

0.6

0.7

0.8

0.9

1

P

FIG. 11. The distinguishability Ps between states ���+� and ���+�

by a homodyne measurement for V=10 �solid curve� and V=20
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50-50 beam splitter to discriminate the thermal-Bell states.
Using the second scheme, it is possible to effectively dis-
criminate the thermal-Bell states without photon number re-
solving detection. The required resources for the second
scheme are two Kerr nonlinear interactions, two single-
photon detectors, two 50:50 beam splitters, and one homo-
dyne detector. The second scheme is more robust to ineffi-
ciency of the detectors: the inefficiency of the single-photon

detectors only degrades the success probability of the Bell
measurement.
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